
Abstract- Magnetic Induction Tomography (MIT) is a technique
for imaging the electromagnetic properties of materials.
Excitation coils are used to induce eddy currents within the
sample volume which are then sensed by receiver coils.  The
technique has attracted interest for biomedical application due
to the non-contacting nature of  the measurements, which may
provide advantages over electrode based impedance
tomography in certain applications.

 The paper describes a transceiver designed for use in a
prototype biomedical MIT system operating with a single
excitation frequency of 10MHz.  To improve channel isolation
and phase stability during signal distribution, the received
signals undergo heterodyne downconversion to 10kHz, filtering
and limiting at the transceiver. Direct phase measurement
between the downconverted reference and received signals is
then undertaken to measure the signal perturbation due to the
induced conduction eddy currents.

Keywords -  Magnetic Induction Tomography, Electrical
Impedance Tomography

I. INTRODUCTION

Of the techniques for imaging the electrical properties of
materials, Electrical Impedance Tomography (EIT) has
attracted the most interest and undergone the furthest
development.  In biomedical applications however, EIT
suffers from a number of operational problems associated
primarily with the electrode-tissue interface such as image
distortion due to errors in electrode placement.

Replacing current injection and sensing by electrodes with
current induction and sensing by coils has been proposed as a
means of addressing some of the problems associated with
the use of electrodes in EIT, with the technique termed
Magnetic Induction Tomography (MIT) [1,2].

A major problem to be overcome in developing a practical
biomedical MIT system is to accurately measure the small
perturbation of the received signal due to the induced eddy
currents given the relatively low conductivity of biological
tissues. The signal resulting from conduction eddy currents
within tissue has a phase lag of 90° to the excitation field.
Phase sensitive detection [1] and direct phase measurement
between the received signal and the excitation signal [2]
have been suggested as suitable data extraction techniques.
High frequency operation offers advantages for biomedical
MIT in terms of the larger induced signal amplitudes to be
expected. Phase stability and cross channel isolation during

the distribution of signals around a multi-channel system
becomes problematic at high frequencies.  In the MIT system
described by Korjenevsky and Cherepenin [3] these issues
are addressed through the use of heterodyne downconversion
of the received and reference signals at the receiver modules,
from 20MHz to 20kHz, prior to signal processing and
distribution.

The expected perturbation of the received signal due to
conduction eddy currents within biological tissues, even with
the use of HF excitation fields, is small. Modeling [4] and
single channel measurements [1] suggest that direct phase
measurement systems may require a precision of the order of
0.003° in order to resolve a 1% variation in the B field
perturbation produced by a typical biological sample.

This paper describes a transceiver designed for use in a
prototype biomedical MIT system. The transmitter operates
at 10MHz and drives 60mA into a 4 turn induction coil. The
receiver incorporates a high frequency instrumentation
amplifier, downconverter, amplifier, bandpass filter and
comparator. The output of the receiver is a 10kHz pulse
which is then distributed for direct phase measurement.  Both
the transmitter and receiver may be placed in a high
impedance disabled state allowing isolation of the coils when
not in use.  The results of measurements characterising the
single channel system are given.

II. METHODS
A. Transmitter

The signal source for the transmitter (Figure 1) is a 10MHz
crystal oscillator module (AEL1211CSN) which is enabled
when the channel is to be used as the transmitter channel.
The OPA3682 is a triple video op amp and is set up as a
balanced driver for the transmitter coil.  The OPA3682 was
chosen for its high bandwidth of 240MHz and its high output
current, specified as 150mA maximum.  In practice it was
found that significant signal distortion took place with a
current drive above 60mA.  A transmitter coil of 4 turns
(2.5cm radius) was found to provide a suitable dynamic
impedance for this current limit.  The OPA3682 features a
disable function which places the inputs into a high
impedance state of 100kΩ  in parallel with 2pF, and therefore
allows isolation of the transmitter coil when not in use. The
AD8056 amplifier is used as an impedance matching buffer
between the oscillator, and the OPA3682.
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Fig. 1. Transmitter Circuit

B. Receiver

The receiver coil is a 5 turn 2.5cm radius coil. An OPA3682
is used as the receiver front end, and is configured as an
instrumentation amplifier with a gain of two allowing
conversion of the received signal from balanced to
unbalanced while providing some rejection of capacitive
pickup which is expected to be common mode.  A centre tap
to ground through a 150Ω  resisitor is placed on the receiver
coil allowing a DC bias current for the OPA3682 while
allowing a high, and symmetrical,  input impedance.

Fig. 2. Receiver Circuit

The output of the OPA3682 is then mixed with a 9.99MHz
local oscillator signal. The resulting signal undergoes three
stages of amplification (97dB in total) and filtering (1st order
bandpass filter with –3dB attenuation at  8kHz and 12kHz)
with a limiting action produced simply by operating the
amplifiers in saturation.  The limited signal is finally passed
to a zero-crossing detector utilising a LT1016 comparator.

C. Measurement Setup

Two transceivers, composed of the transmitter and receiver
circuits previously described, were placed in metal boxes
(6cm width, 11cm length, 3cm depth) and attached to a
cylindrical metal screen (35cm diameter, 25cm height).  A
9.99MHz signal was split and distributed to both modules
via coaxial cable.  One of the transceiver modules was set to
transmit (transmitter and receiver active) and the other to
receive (transmitter disabled, receiver active).  The receiver
module was attached to a 5 turn receiver coil, while the
receiver of the transmitter module was attached to a single
turn 2.5cm radius coil, providing a reference signal.

The outputs of the modules were distributed to an XOR gate
(74HC86) as shown in figure 3.

Fig. 3.Measurement Setup

The standard deviation of the output pulse widths, which
should be directly proportional to the phase offset between
the received and reference signals, was measured by
collecting individual pulse widths with the automatic
measurement facility of a Tektronix TDS210 oscilloscope.
Drift was estimated by collecting 100000 pulse averages
over a 15 minute period on the Racal 9901 counter.

In order to compare the phase precision performance of the
transceivers with a representative measurement of
perturbations produced by a sample of conductivity within
the biological range, a 3S/m beaker of saline (9.5cm
diameter, 15cm height) was placed equidistant, and centrally,
between the transmitter and receiver coils.  The beaker was
then displaced laterally on a line drawn equidistant from both
coils, and the pulse width was measured for each position by
collecting 1000 pulses on the Racal 9901 counter.
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III. RESULTS

The standard deviation of individual pulses, over a series of
forty measurements with an empty detector volume, was
found to be 165ns corresponding to  0.6°.

After switching on the channels it was observed that a
significant amount of phase drift occurred during the first 5
minutes of operation, with a change of average phase of
approximately 0.15° during this period.  A plateau region
was achieved after 5 minutes of operation, and it was found
that the maximum drift during a 15 minute measurement
period was 14ns or 0.05°.

The results of the measurement utilising the beaker of saline,
collected by taking 10 samples of 1000 pulse averages per
position are shown in figure 4 (shown by full line).

Fig. 4 Measured Phase vs Lateral Displacement

The range of the measured phase offset was 3.5° over the
lateral displacement range of –12cm to +12cm.  The average
standard deviation of the measurements was 0.029° (1000
sample averages).

The measurements were repeated using an identical beaker
filled with deionised water, and the results are shown by the
dashed line. The range of the measured phase in this case
was 0.25° with a maximum at the central (displacement =
0cm) position.  The average standard deviation was found to
be 0.02° over this set of measurements.

IV. DISCUSSION

A practical benchmark for biomedical MIT is to be able to
resolve 1% variations in the B field perturbations expected
from biological tissues.  For tissues with conductivities in the
biological range of 0.1S/m – 2S/m, the maximum phase
shifts expected, operating at 10MHz, are of the order of 1°.
Practical in vivo imaging is therefore likely to require MIT
systems with better than 0.01° phase precision, and with
reasonable data acquisition times.

The system described provides a 100 sample average
resolution of 0.06°, with a corresponding data acquisition
time of 0.01s.  The major limiting factor for phase resolution
appears to be the received signal amplitude.  In
measurements aimed at characterising the phase precision of
the receiver modules [5], it was found that the receivers
provided better than 0.2° individual pulse standard deviation
down to an input amplitude of 8mVpp, with the pulse
standard deviation rapidly deteriorating below this limit.

The initial drift on startup should not be significant since the
major contribution to heating are the coil driver amplifiers.
These will not be used continuously, but in short bursts
corresponding to the single channel acquisition time, liable
to be well under 1s.

Of greater concern are the results obtained with deionised
water.  The change in measured phase offset found (0.25°)
suggests that the residual direct coil to coil electric field
linkage is at present far too large and needs to be addressed
by the use of shielding on either or both sets of coils.
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